Бисероплетение

Кора и подкорка головного мозга функции. Подкорковые центры

Кора и подкорка головного мозга функции. Подкорковые центры
    • Подкорка ………………………………………………..стр 8
    • Таламус
    • Гипоталамус
    • Базальные ядра
    • Гиппокамп
    • Миндалевидное тело
    • Средний мозг
    • Ретикулярная формация
  1. Подкорковые функции
  1. Заключение
  2. Список использованной литературы

    Головной мозг является особо специализированной частью центральной нервной системы. У человека его масса составляет в среднем 1375 г. Именно здесь громадные скопления вставочных нейронов хранят полученный на протяжении жизни опыт действий. Головной мозг представлен 5-ю отделами. Три из них - продолговатый мозг, мост и средний мозг - объединяются под названием ствол (или - стволовая часть) головного мозга.

    Стволовая часть принципиально отличается от двух других отделов мозга, так как снабжена черепными нервами, через которые ствол непосредственно контролирует область головы и часть шеи. Два других отдела - промежуточный и конечный мозг - не оказывают прямого влияния на структуры человеческого тела, они регулируют их функции, воздействуют на центры ствола и спинного мозга. Последние же, снабженные черепными и спинномозговыми нервами, передают через них обобщенные команды к исполнителям - мышцам и железам.

    Помимо скоплений нейронов, имеющих прямое отношение к нервам, ствол мозга содержит и другие нервные центры, которые по характеру близки к центрам промежуточного и конечного мозга (ретикулярная формация, красные ядра, черная субстанция), что существенно отличает его от спинного мозга. Особое место занимает мозжечок, выполняющий важнейшие задачи по поддержанию степени напряжения мышц (тонуса), по координации их работы в выполнении движений, в поддержании равновесия при этом. В мозжечке громадное количество вставочных нейронов, которые он вмещает исключительно потому, что они находятся не только в его толще, но и в составе крайней складчатой поверхности, составляя кору мозжечка. Такой феномен проявляется, помимо него, только в коре конечного мозга.

    Спереди и выше ствола находится промежуточный мозг и главными компонентами в виде зрительного бугра (таламуса) - важного промежуточного центра по ходу чувствительных путей к конечному мозгу, подбугорной области (гипоталамуса) - она содержит массу центров, важных для регуляции обмена веществ в организме, его поведения и тесно связана с функционированием гипофиза, с которым соединена ножкой. Позади зрительного бугра располагается эпифиз (шишковидное тело) - железа внутренней секреции, включенная в регуляцию пигментного обмена в коже и полового созревания.

    Наибольшую часть массы головного мозга составляет конечный мозг, обычно описываемый как два полушария большого мозга, соединенные мозолистым телом. Его поверхность резко складчата из-за массы борозд (латеральная, центральная и др.), разделяющих извилины. Многие из них имеют постоянный характер, что позволяет различать участки коры.

    Полушария разделяют на 4 основные доли. Лобная доля в значительной мере связана с определением личностных качеств человека, а ее задней части подчинены все двигательные центры ствола и спинного мозга. Поэтому при ее поражении появляются параличи мышц. В теменной доле, в основном, формируются ощущения тепла, холода, прикосновения, положения частей тела в пространстве. Затылочная доля содержит зрительные центры, височная - слуховые и обонятельные.

    В глубине полушарий нейроны концентрируются в виде узлов (подкорки). Они вместе с другими центрами и мозжечком обеспечивают координацию работы мышц при выполнении двигательных программ разной сложности. Головной мозг окружен сложной системой оболочек. Мягкая оболочка сращена с его веществом и содержит в себе питающие мозг сосуды, ветви которых проникают в толщу мозга. Между ней и более поверхностной паутинной оболочкой, очень тонкой и бессосудистой, находится подпаутинное пространство со спинномозговой жидкостью. Ее большая часть продуцируется в полостях мозга (желудочков) и через отверстия между продолговатым мозгом и мозжечком выходит в это пространство, образуя вокруг мозга защитную гидравлическую подушку. Самая наружная твердая оболочка соединяется с костями черепа.

    ПОДКОРКОВЫЕ СТРУКТУРЫ МОЗГА — отделы головного мозга, расположенные между корой больших полушарий и продолговатым мозгом. Оказывают активирующее влияние на кору, участвуют в формировании всех поведенческих реакций человека и животных, в поддержании мышечного тонуса и др.

    К подкорковым образованиям относят структуры, находящиеся между корой головного мозга и продолговатым мозгом: таламус, гипоталамус, базальные ядра, комплекс образований, объединяемых в лимбическую систему мозга, а также ретикулярную формацию ствола мозга и таламуса. Любое афферентное возбуждение, возникшее при раздражении рецепторов на периферии, на уровне ствола мозга трансформируется в два потока возбуждений. Один поток по специфическим путям достигает специфической для данного раздражения проекционной области коры; другой — по коллатералям попадает в ретикулярную формацию, откуда в виде восходящего потока возбуждений направляется к коре больших полушарий, активируя ее. Ретикулярная формация имеет тесные функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом, лимбической системой, мозжечком, поэтому многие виды деятельности организма (дыхание, пищевая и болевая реакции, двигательные акты и др.) осуществляются при ее обязательном участии.

    Афферентные потоки возбуждений от периферических рецепторов на пути к коре больших полушарий имеют многочисленные синаптические переключения в таламусе. От латеральной группы ядер таламуса (специфические ядра) возбуждения направляются по двум путям: к подкорковым ганглиям и к специфическим проекционным зонам коры мозга. Медиальная группа ядер таламуса (неспецифические ядра) служит местом переключения восходящих активирующих влияний, которые направляются от стволовой ретикулярной формации в кору мозга. Тесные функциональные взаимосвязи между специфическими и неспецифическими ядрами таламуса обеспечивают первичный анализ и синтез всех афферентных возбуждений, поступающих в головной мозг. У животных, находящихся на низких ступенях филогенетического развития, таламус и лимбические образования играют роль высшего центра интеграции поведения, обеспечивая все необходимые двигательные акты животного, направленные на сохранение его жизни. У высших животных и человека высшим центром интеграции является кора больших полушарий.

    К лимбической системе относят комплекс структур головного мозга, который играет ведущую роль в формировании основных врожденных реакций человека и животных: пищевых, половых и оборонительных. Он включает в себя поясничную извилину, гиппокамп, грушевидную извилину, обонятельный бугорок, миндалевидный комплекс и область перегородки. Центральное место среди образований лимбической системы отводится гиппокампу. Анатомически установлен гиппокампальный круг (гиппокамп -свод мозга- мамиллярные тела -передние ядра таламуса -поясная извилина -гиппокамп), который вместе с гипоталамусом играет ведущую роль в формировании эмоций. Регуляторные влияния лимбической системы широко распространяются на вегетативные функции (поддержание постоянства внутренней среды организма, регуляция кровяного давления, дыхания, тонуса сосудов, моторики желудочно – кишечного тракта, половых функций).

    Кора больших полушарий оказывает постоянные нисходящие (тормозные и облегчающие) влияния на подкорковые структуры. Существуют различные формы циклического взаимодействия между корой и подкорковыми структурами, выражающиеся в циркуляции возбуждений между ними. Наиболее выраженная замкнутая циклическая связь существует между таламусом и соматосенсорной областью коры мозга, составляющими в функциональном отношении единое целое. Корково-подкорковая циркуляция возбуждений может служить основой для формирования условно — рефлекторной деятельности организма.

    Таламус (thalamus, зрительный бугор) - структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

    Морфофункциональная организация. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути.

    Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

    Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер). Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная - в лобную долю коры; латеральная - в теменную, височную, затылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая - в разные области коры большого мозга.

    Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

    К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральиое, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно.

    Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

    От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.

    Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию.

    В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры. МКТ имеет четкую тонотопичность. Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.

    Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное - с лобной долей коры, латеральное дорсальное - с теменной, подушка - с ассоциативными зонами теменной и височной долями коры большого мозга.

    Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. На полисенсорных нейронах происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами теменной и височной долей коры большого мозга, нейроны латерального ядра - с теменной, нейроны медиального ядра - с лобной долей коры большого мозга.

    Неспецифические ядра таламуса представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса.

    Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свидетельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной активности, т. е. развитие сонного состояния.

    Страницы:123456следующая →

    Проекционными называют те волокна, которые связывают полушария головного мозга с нижележащими отделами мозга – стволом и спинным мозгом. В составе проекционных волокон проходят проводящие пути, несущие афферентную (чувствительную) и эфферентную (двигательную) информацию.

    Итак, основные отделы, борозды и извилины головного мозга представлены на рис. 5.6.

    Рис. 5. Головной мозг, левое полушарие (вид сбоку):

    1 – прецентральная извилина; 2 – прецентральная борозда; 3 – верхняя лобная извилина; 4 – центральная борозда; 5 – средняя лобная извилина;

    б – нижняя лобная извилина; 7 – восходящая ветвь латеральной борозды;

    8 – горизонтальная ветвь латеральной борозды; 9 – задняя ветвь латеральной борозды; 10 – верхняя височная извилина; 11 – средняя височная извилина;

    12 – нижняя височная извилина; 13 – теменная долька; 14 – пост-центральная борозда; 15 – постцентральная извилина; 16 – надкраевая извилина;

    17 – угловая извилина; 18 – затылочная доля; 19 – мозжечок; 20 – горизонтальная щель мозжечка; 21 – продолговатый мозг

    Строение подкорковой области головного мозга. Промежуточный мозг

    2.1 Стриопаллидарная система

    В толще белого вещества полушарий мозга располагаются скопления серого вещества, называемые подкорковыми ядрами (базальные ядра). К ним относятся хвостатое ядро, чечевицеобразное ядро, ограда и миндалевидное тело (рис. 6). Чечевицеобразное ядро, находящееся снаружи от хвостатого ядра, делится на три части. В нем различают скорлупу и два бледных шара.

    Рис. 6. Подкорковые ядра:

    1 – хвостатое ядро; 2 – чечевицеобразное ядро; 3 – зрительный бугор.

    А – горизонтальный разрез: а – ограда; б – скорлупа; в и г – бледный шар;

    В-фронтальный разрез: а – бледный шар; б – скорлупа

    В функциональном отношении хвостатое ядро и скорлупа объединяются в полосатое тело (стриатум), а бледные шары вместе с черной субстанцией и красными ядрами, расположенными в ножках мозга, – в бледное тело (паллидум).

    Вместе они представляют очень важное в функциональном отношении образование – стриоппаллидарную систему. По морфологическим особенностям и филогенетическому происхождению (появление их на определенной ступени эволюционного развития) бледное тело является более древним, чем полосатое тело, образованием.

    Базальные структуры

    Стриопаллидарная система является важной составной частью двигательной системы. Она входит в состав так называемой пирамидной системы. В двигательной зоне коры головного мозга начинается двигательный – пирамидный – путь, по которому следует приказ выполнить то или иное движение.

    Экстрапирамидная система, важной составной частью которой является стриопаллидум, включаясь в двигательную пирамидную систему, принимает подсобное участие в обеспечении произвольных движений.

    В то время, когда кора головного мозга еще не была развита, Стриопаллидарная система была главным двигательным центром, определявшим поведение животного. За счет стриопаллидарного двигательного аппарата осуществлялись диффузные, массовые, движения тела, обеспечивающие передвижение, плавание и т.п.

    С развитием коры головного мозга Стриопаллидарная система перешла в подчиненное состояние. Главным двигательным центром стала кора головного мозга.

    Стриопаллидарная система стала обеспечивать фон, готовность к совершению движения; на этом фоне осуществляются контролируемые корой головного мозга быстрые, точные, строго дифференцированные движения.

    Для совершения движения необходимо, чтобы одни мышцы сократились, а другие расслабились, иначе говоря, нужно точное и согласованное перераспределение мышечного тонуса.

    Такое перераспределение тонуса мышц как раз и осуществляется стриопаллидарной системой. Эта система обеспечивает наиболее экономное потребление мышечной энергии в процессе выполнения движения. Совершенствование движения в процессе обучения их выполнению (например, отработка до предела отточенного бега пальцев музыканта, взмаха руки косаря, точных движений водителя автомобиля) приводит к постепенной экономизации и автоматизации.

    Такая возможность обеспечивается стриопаллидарной системой.

    Выше было отмечено, что в филогенетическом отношении полосатое тело – образование более молодое, чем бледное тело. Примером паллидарных организмов являются рыбы.

    Они передвигаются в воде с помощью бросковых мощных движений туловища, не «заботясь» об экономии мышечной энергии. Эти движения имеют относительно точный и мощный характер. Однако они расточительны энергетически. У птиц полосатое тело уже хорошо выражено, что помогает им более расчетливо регулировать качество, точность и количество движений. Таким образом, бледное тело тормозит и регулирует деятельность паллидарный системы (т.

    к. филогенетически более молодые образования контролируют и тормозят более древние).

    Двигательные акты новорожденного носят паллидарный характер: они некоординированны, бросковы и часто излишни. С возрастом, по мере созревания стриатума, движения ребенка становятся более экономичными, скупыми, автоматизированными.

    Стриопаллидарная система имеет связи с корой головного мозга, корковой двигательной системой (пирамидной) и мышцами, образованиями экстрапирамидной системы, со спинным мозгом и зрительным бугром.

    Другие базальные ядра (ограда и миндалевидное тело) расположены кнаружи от чечевицеобразного ядра. Миндалевидное тело входит в другую функциональную систему – лимбико-ретикулярный комплекс.

    2.2 Зрительный бугор

    Из промежуточного мозгового пузыря развиваются зрительный бугор и Подбугорная область (гипоталамус), из полости промежуточного мозгового пузыря – III желудочек.

    Зрительный бугор, или таламус, расположен по сторонам III желудочка и состоит из мощного скопления серого вещества.

    Зрительный бугор делят на собственно зрительный бугор, надбугорную (надталамическую область, или эпиламус) и забугорную (заталамическая область, или метаталус). Основную массу серого бугра составляет таламус (см. рис. 7).

    Рис. 7. Топография таламуса

    1 – таламус; 2 – тело хвостатого ядра; 3 – тело бокового желудочка; 4 – мозолистое тело; 5 – продолговатый мозг.

    В нем выделяют выпячивание подушку, кзади от которой имеются два возвышения – наружное и внутреннее коленчатые тела (они входят в забугорную область).

    В таламусе различают несколько ядерных групп.

    Надбугорная область, или эпиталамус состоит из шишковидной железы и задней спайки мозга.

    Забугорная область, или метаталамус, включает в себя коленчатые тела, являющиеся возвышением таламуса. Они лежат кнаружи и книзу от подушки таламуса.

    Подбугорная область, или гипоталамус, лежит книзу от таламуса, имеет ряд ядер, лежащих в стенках III желудочка.

    Зрительный бугор является важным этапом на пути проведения всех видов чувствительности. К нему подходят и в нем сосредоточиваются чувствительные пути – осязание, болевое, температурное чувство, зрительные тракты, слуховые пути, обонятельные пути и волокна от экстрапирамидной системы. От нейронов зрительного бугра начинается следующий этап передачи чувствительных импульсов – в кору головного мозга.

    На определенном этапе эволюции нервной системы таламус был центром чувствительности, подобно тому, как Стриопаллидарная система – механизмом движений. По мере появления и развития коры головного мозга основная роль в функции чувствительной сферы перешла коре головного мозга, а зрительный бугор остался лишь передаточной станцией чувствительных импульсов от периферии к коре мозга.

    Средний мозг, четверохолмие. Строение и функции. Сильвиев водопровод. Стволовая часть головного мозга

    Средний мозг, четверохолмие

    В крыше среднего мозга различают пластинку в виде четверохолмия. Два верхних холмика, как уже указывалось выше, являются подкорковыми центрами зрительного анализатора, а нижние — слухового анализатора.

    Четверохолмие — это рефлекторный центр различного рода движений, возникающих главным образом под влиянием зрительных и слуховых раздражений. Именно здесь происходит переключение импульсов на нижележащие структуры мозга.

    Крыша среднего мозга (tectum mesencephali представляет собой пластинку четверохолмия (lamina quadrigemina), которая включает в себя две пары бугорков (холмиков): верхние бугорки (colliculi superiores, холмики) четверохолмия и нижние бугорки (colliculi inferiores, холмики) четверохолмия.

    Верхние бугорки (холмики) у человека несколько больше нижних.

    Между верхними бугорками существует широкая впадина, которая носит название субпинеального треугольника. Над этой впадиной расположен эпифиз (шишковидная железа) .

    От каждого холмика в латеральном направлении отходит утолщение в виде валика, представляющее собой пучки волокон. Это ручка верхнего холмика (brachium colliculi cranialis, superiors) и ручка нижнего холмика (brachium colliculi caudalis, inferioris).

    Ручки холмиков направляются к промежуточному мозгу.

    Ручка верхнего холмика идет под подушкой таламуса к латеральному коленчатому телу и к зрительному тракту. Более широкая и плоская нижняя ручка исчезает под медиальным коленчатым телом. Подушка таламуса, коленчатые тела и зрительный тракт относятся уже к промежуточному мозгу.

    Подкорковые отделы головного мозга (подкорка)

    У человека верхние холмики крыши среднего мозга и латеральные коленчатые тела выполняют функцию среднемозговых зрительных центров, а нижние холмики четверохолмия и медиальные коленчатые тела — слуховых центров

    Сильвиев водопровод

    Внутри среднего мозга проходит узкий канал — водопровод мозга (сильвиев водопровод).

    Сильвиев водопровод — узкий канал длиной 2 см, который соединяет III и IV желудочки. Вокруг водопровода располагается центральное серое вещество, в котором заложены ретикулярная формация, ядра III и ядра IV пар черепных нервов и др.

    На сечениях среднего мозга сильвиев водопровод может иметь вид треугольника, ромба или эллипса.

    Водопровод мозга соединяет III желудочек промежуточного мозга и IV желудочек ромбовидного мозга Вокруг водопровода среднего мозга расположено центральное серое вещество (substantia grisea centralis) . В центральном сером веществе в области дна водопровода лежат ядра двух пар черепно- мозговых нервов: на уровне верхних холмиков четверохолмия находится ядро глазодвигательного нерва (III пара); на уровне нижних холмиков четверохолмия залегает ядро блокового нерва (IV пара).

    Предыдущая12131415161718192021222324252627Следующая

    О влиянии коры на кору же через подкорковые образования.

    Еще в некоторых старых работах было показано, что такое же диффузное угнетение корковых ритмов, какое получается при раздражении ретикулярной формации, может получиться и при раздражении коры (Дюссер де Баренн, Мак Куллоч, 27; Беритов, Брегадзе, Цкипуридзе, 28). Позднее подробно изучалось влияние раздражения лимбической коры (орбитальной коры и передней части поясной извилины) на медленную электрическую активность других областей коры у кошки и у обезьян (Слоан, Джаспер, 29).

    Сейчас же после прекращения кратковременного раздражения поясной извилины в разных частях головного мозга наступало значительное изменение электрической активности, которое продолжалось сравнительно долго, постепенно возвращаясь к исходному состоянию.

    Эффект получался генерализованный, т. е. изменения наблюдались как на поверхности коры обоих полушарий, так и в таламических специфических и неспецифических ядрах.

    В подавляющем большинстве случаев получалось снижение амплитуды медленных потенциалов, вплоть до полного их угнетения.

    Важно отметить, что генерализованный характер эффекта раздражения лимбической коры получался не благодаря транскортикальному распрост-

    ранению возбуждения, а через активацию подкоркового механизма, действующего на кору диффузно, т.

    е. через кортикофугальное возбуждение неспецифических образований таламуса и ствола. Это было видно из того, что после субпиальной надрезки и изолирования раздражаемого участка от остальной коры эффект не устранялся. После же подрезки белого вещества под раздражаемым участком коры эффект исчезал. Почти к таким же результатам пришел также Каада при раздражении передних «риненцефалических» участков коры (Каада, 30).

    Значение новой коры в регуляции функции восходящей ретикулярной системы систематически и подробно изучалось на протяжении последних лет Бремером с сотрудниками.

    Так, Бремер и Терцуоло (31) показали на изолированных энцефалических препаратах кошки важную роль коры больших полушарий в пробуждении и сохранении бодрствующего состояния. Это видно было из того, что после билатеральной коагуляции первичной и вторичной слуховых зон коры на смысловые звуковые раздражения (зов) дремлющий препарат кошки больше не пробуждается (судя по электрической активности коры и глазным реакциям), тогда как кожные раздражения сохраняют свою пробуждающую силу.

    Эти опыты прямо указывают, что пробуждение в ответ на звуковые раздражения, имеющие значение условного сигнала, может осуществиться лишь через первичное возбуждение специфической слуховой области коры, которая, действуя на ретикулярную формацию, возбуждает ее, а эта последняя уже вторично активирует всю кору и вызывает пробуждение.

    Понятно, что при зове кошки импульсы возбуждения из рецептора направляются так же как при слабом звуковом раздражении: как к соответствующей воспринимающей области коры, так и к ретикулярной формации. Когда оба пункта, воспринимающие звуковые импульсы, функционируют нормально, иначе говоря, когда имеется нормальное взаимодействие между корой и ретикулярной формацией и, в частности, когда нисходящее влияние коры на ретикулярную формацию не нарушено, то на зов животное пробуждается.

    Но если выключаются корковые слуховые области, то те же афферентные импульсы, поступающие к ретикулярной формации при зове, уже не в состоянии вызвать пробуждение.

    О роли кортикофугальной импульсации в пробуждении говорят и опыты Ройтбака и Бутхузи (32). Им удалось наблюдать реакцию пробуждения (как поведенческую, так и по ЭЭГ) в ответ на непосредственное электрическое раздражение внутреннего коленчатого тела у кошек с хроническими вживленными электродами.

    Возможно и это пробуждение является результатом первичного возбуждения слуховой коры, которое в свою очередь активирует ретикулярную формацию и тем вызывает пробуждение животного.

    В опытах Бремера и Терцуоло (31) с непосредственным электрическим раздражением разных участков новой коры, в ретикулярной формации были зарегистрированы одинакового характера ответные потенциалы, которые при следовании друг за другом, подобно ответам периферических раздражений, действовали как облегчающе, так и угнетающе.

    Взаимное влияние в ретикулярной формации оказывали также кортикофугальные и периферические импульсы. Наконец, было показано, что кратковременное тетаническое раздражение разных участков коры вызывает точно такую же картину пробуждения (билатеральная «десинхронизация» ЭЭГ, расширение зрачка и движения глаз), какая наблюдается при активации ретикулярной формации, вызванной ее непосредственным электрическим раздражением или через периферические афферентные импульсы.

    Билатеральная «реакция пробуждения» ЭЭГ не пропадает после перерезки мозолистого тела, она возникает в период раздражения коры и длится долго после прекращения раздражения. Из испытанных областей коры наиболее эффективными оказались соматосенсорная, соматомоторная и парастриарная области.

    Раздражение коры влияет как на ретикулярную формацию, так и на другие подкорковые образования. Это было подробно изучено на обезьянах (Френч, Эрнандец-Пеон и Ливингстон, 33).

    Прежде всего было показано, что

    независимо от раздражаемого участка коры ответные потенциалы возникают одновременно в широкой области подкорки, начиная от передней коммиссуры до мостовой покрышки. Наряду с ретикулярной формацией и неспецифическими таламическими ядрами ответы на раздражение коры были зарегистрированы в хвостатом ядре, бледном шаре, черной субстанции, красном ядре, таламических передаточных и ассоциационных ядрах и т.

    д. Таким образом, каждый из раздражаемых участков коры оказался связанным нисходящими путями с широкой областью ствола мозга, а каждый участок того или другого подкоркового образования - почти со всеми областями коры. Благодаря этому при сочетании раздражений двух разных участков коры ответы их в ретикулярной формации взаимно влияли друг на друга.

    В этих же областях подкорки регистрировались ответы и на раздражение седалищного нерва. Ответные потенциалы ствола на раздражение как коры, так и седалищного нерва одинаково угнетались после введения барбитурата. При местном стрихнинном отравлении коры синхронно с корковыми стрихнинными разрядами возникали такого же характера разряды или волны в неспецифических таламических ядрах и ретикулярной формации, или заметно менялась их фоновая активность.

    Вместе с тем было показано, что не все области коры влияют одинаково на подкорку.

    Наиболее эффективными оказались сенсомоторная, задняя париетальная или параокципитальная области, верхняя височная извилина, орбитальная поверхность лобной доли и поясная извилина, тогда как раздражение лобного и затылочного полюсов и баэальной поверхности височной доли не давали ответов.

    По своему действию на ствол отдельные области коры ничем не отличались друг от друга: они вызывали одинаковые ответы приблизительно с одинаковым латентным периодом во всех изученных подкорковых образованиях.

    Подкорковые функции

    Десинхронизацию ЭЭГ считают неотъемлемым электрическим коррелятом поведенческого пробуждения и поэтому можно заключить, что раздражением упомянутых выше участков коры можно вызвать также поведенческое пробуждение.

    Это явление специально было изучено на обезьянах с вживленными электродами. Электроды были вживлены в разных областях коры, в том числе в тех областях, раздражение которых вызывало возникновение ответных потенциалов в ретикулярной формации. Было показано, что спящее животное быстро пробуждается от раздражения, если оно производилось в вышеупомянутых областях коры (сенсомоторная, задняя париетальная, верхняя височная, орбитальная и поясная извилины).

    Раздражение других областей коры не вызывало пробуждения. Если активные корковые области раздражались при бодрствующем состоянии, то развивалась картина, указывающая на настораживание животного (моментальное прекращение движений, застывание в одной позе, поднятие головы и повороты в разные стороны и т. д.). Иначе говоря, получалась типичная ориентировочная реакция, развивающаяся от раздражения самой ретикулярной формации.

    Хорошо известно, что во время бодрствования, дремоты или сна у ненаркотизированного животного (с вживленными электродами) в коре и многих подкорковых образованиях (в том числе в ретикулярной формации ствола) регистрируется, в большинстве случаев, одинакового характера активность; например, при сне, как в коре, так и в подкорковых образованиях почти одновременно возникает медленная активность (Нарикашвили, 2; Цкипуридзе, 5; Бремер, Терцуоло, 31).

    То же самое наблюдали Жуве и Мишель (34) на кошках, у которых отводящие электроды были вживлены в разных областях коры и мезодиэнцефалической области. Однако после мезенцефалической перерезки или после удаления (или повреждения) всей коры (отсасыванием или коагуляцией), при естественном или барбитурном сне животного в подкорковых образованиях (за исключением гиппокампа) харак-

    терная для сна медленная активность уже не развивалась.

    Для развития в ретикулярных образованиях медленной активности требовалось сохранить в связи с последними определенную минимальную массу неокортикального вещества. Какую-либо преимущественную роль определенных областей коры им не удалось установить. Таким образом, та перестройка деятельности нейронов ретикулярных образований, которая ведет к их синхронной активности и возникновению медленных волн, оказывается, без связи с корой не происходит (см. также Серков, с сотр., 35).

    Выходит, что кора непосредственно участвует в организации электрических ритмов ретикулярных образований так же, как последние принимают непосредственное участие в становлении и изменении корковых ритмов. Это еще раз подтверждает мысль о тесной связи и единстве функции этих образований.

    Суммируя все сказанное, можно прийти к заключению, что ретикулярная восходящая активирующая система может возбудиться как кортикофугальными, так и периферическими афферентными импульсами.

    Как разные кортикофугалъные, так и разные периферические импульсы конвергируют на одни и те же области или нейроны ретикулярной формации, благодаря чему наблюдается взаимодействие как между кортикофугалъными импульсами, идущими из разных областей коры, так и между ними и периферическими импульсами. «Активация» или «десинхронизацияъ ЭЭГ, а также пробуждение животного может наступать как от периферических, так и от кортикофугалъных импульсов.

    Предыдущая67686970717273747576777879808182Следующая

    ПОСМОТРЕТЬ ЕЩЕ:

    обеспечивают регуляцию жизненно важных процессов в организме за счет деятельности подкорковых образований головного мозга. Подкорковые структуры головного мозга имеют функциональные отличия от корковых структур и занимают условно подчиненное по отношению к коре положение. К таким структурам сначала относили базальные ядра, таламус, гипоталамус. Позднее как физиологически самостоятельные системы были выделены стриопаллидарная система (см. Экстрапирамидная система),включающая базальные ганглии и среднемозговые ядерные образования (красное ядро и черная субстанция); таламонеокортикальная система: ретикулокортикальная система (см.

    Ретикулярная формация), лимбико-неокортикальная система (см. Лимбическая система), мозжечковая система (см. Мозжечок), система ядерных образований промежуточного мозга и др.

    (рис. ).

    Подкорковым функциям принадлежит важная роль в переработке информации, поступающей в головной мозг из внешней среды и внутренней среды организма. Этот процесс обеспечивается деятельностью подкорковых центров зрения и слуха (латеральные, медиальные, коленчатые тела), первичных центров по переработке тактильной, болевой, протопатической, температурной и других видов чувствительности - специфические и неспецифические ядра таламуса.

    Особое место среди П.

    Подкорковые структуры головного мозга

    ф. занимают регуляция сна (Сон) и бодрствования, активность гипоталамо-гипофизарной системы (Гипоталамо-гипофизарная система), которая обеспечивает нормальное физиологическое состояние организма, Гомеостаз. Важная роль принадлежит П. ф. в проявлении основных биологических мотиваций организма, таких как пищевые, половые (см. Мотивации).П. ф. реализуются путем эмоционально окрашенных форм поведения; большое клинико-физиологическое значение имеют П. ф. в механизмах проявления судорожных (эпилептиформных) реакций различного происхождения.

    Таким образом, П. ф. являются физиологической основой деятельности всего мозга. В свою очередь, П. ф. находятся под постоянным модулирующим влиянием высших уровней корковой интеграции и психической сферы.

    При поражениях подкорковых структур клиническая картина определяется локализацией и характером патологического процесса.

    Например, поражение базальных ядер проявляется обычно синдромом Паркинсонизма, экстрапирамидными гиперкинезами (Гиперкинезы). Поражение ядер таламуса сопровождается расстройствами различных видов чувствительности (Чувствительность),движений (Движения), регуляции вегетативных функций (см. Вегетативная нервная система). Нарушения функции глубинных структур (мозговой ствол и др.) проявляются в виде бульбарных параличей (Бульбарный паралич),псевдобульбарных параличей (Псевдобульбарный паралич) с тяжелым исходом.

    См. также Головной мозг,Спинной мозг.

    Схематическое изображение основных афферентных и эфферентных связей в процессе осуществления подкорковых функций.

Синдромы поражения подкорковой области

Поражение мозолистого тела характеризуется психическими расстройствами, нарастающим слабоумием, снижением памяти, нарушается ориентация в пространстве, развивается апраксия левой руки.

Таламический синдром Дежерина-Русси характеризуется на противоположной стороне гемианестезией, сенситивной гемиатаксией, таламическими болями. Наблюдается таламическая рука, хорео-атетоидный гиперкинез и насильственный смех и плач.

Гипоталамический синдром складывается из нарушений углеводного, жирового, белкового обменов, нарушений деятельности сердечно-сосудистой, дыхательной и желудочно-кишечной систем. Может быть ожирение, кахексия, импотенция, нарушение менструального цикла. Нарушение сна и бодрствования.

При поражении надбугорья: наблюдается ускоренное половое созревание, усиление роста, атаксия.

Синдром поражения забугорья (metathalamus): поражение наружных и внутренних коленчатых тел характеризуется нарушением слуха, гомонимной (центральной и периферической) гемианопсией.

Синдромы поражения внутренней капсулы: гемианестезия, гемиплегия и гемианопсия на противоположной стороне. Синдром поражения лучистого венца: гемипарез, гемигипестезия, монопарез, моноплегия с неравномерным поражением руки и ноги.

Паркинсоновский синдром: акинезия, гипокинезия, олигокинезия, пластическая гипертония мышц, симптом «зубчатого колеса», «восковой куклы», забрасывание в стороны при ходьбе, паркинсоническое топтание на месте, замедленность мышления, парадоксальные движения.

Может быть повышение постуральных рефлексов, тихий монотонный голос, нарушение позы и походки (голова и туловище наклонены вперед, руки согнуты в локтевых и лучезапястных суставах, ноги – в коленных и слегка приведены), характерен паллидарный тремор.

Синдром поражения полосатого тела (гипотонически-гиперкинетический синдром): гипотония, хорея, атетоз, хореоатетоз, лицевой гемиспазм, лицевой параспазм, гемитремор, торсионный спазм, миоклонии; тики, блефароспазм, спазм платизмы, кривошея. При поражении субталамического ядра (люисова тела) наблюдается гемибаллизм.

Подкорковая область

Подкорковые образования - это скопление серого вещества, ближайшего к коре головного мозга. Хвостатое ядро сформировалось из переднего пузыря и по своему происхождению ближе к коре головного мозга. Чечевидное ядро подразделяется на скорлупу и бледный шар. Близкие по своей структуре скорлупа и хвостатое ядро, а также более поздние образования составили ядро, называемое стриатум (полоса* тое тело). Бледный шар (паллидум) - более старое образование, антагонист полосатого тела. Полосатое тело и бледный шар образуют стрио-палл идарную систему. Миндалевидное ядро тесно связано с лимбической областью. Значение ограды неясно .

Строение подкорковых узлов достаточно сложно. Так, для полосатого тела характерно наличие как крупных, так и мелких полигональных клеток, отличающихся хроматофильной цитоплазмой и большим количеством дендритов. В структуре бледного шара преобладают треугольные и веретенообразные клетки, много волокнистых образований.

Подкорковые узлы связаны между собой, а также с корой, промежуточным и средним мозгом. Связь подкорковых узлов с корой осуществляется через зрительный бугор и его проводники. Некоторые исследователи признают наличие непосредственной связи коры с подкорковыми узлами.

Подкорковые узлы окружены белым веществом, носящим своеобразное название - сумка. Различают внутреннюю, наружную и внешнюю сумки. В сумках проходят различные проводящие пути, осуществляющие связь коры с нижележащими областями и непосредственно с подкорковыми узлами. В частности, пирамидный путь, осуществляющий связь коры с различными этажами головного и спинного мозга, проходит через внутреннюю сумку. Тесная связь подкорковых образований с вегетативными центрами указывает на то, что они являются регуляторами вегетативных функций, выполняют эмоционально-выразительные, защитные движения и автоматические установки, регулируют мышечный тонус, уточняют вспомогательные движения при перемене положения тела.

Большое внимание изучению деятельности подкорковых узлов уделял И.П. Павлов, рассматривая подкорку как аккумулятор коры, как сильную энергетическую базу, которая заряжает кору нервной энергией. Характеризуя взаимодействие коры и подкорки, И.П. Павлов писал: "Подытоживая все сказанное мною относительно деятельности коры, можно сказать, что подкорка является источником энергии для всей высшей нервной деятельности, а кора играет роль регулятора по отношению к этой слепой силе, тонко направляя и сдерживая ее"1.

Паллидум, как более старое образование подкорки, тесно связан с красными ядрами, от которых начинается экстрапирамидный путь (монаковский пучок), несущий импульсы от всех отделов головного мозга, располагающихся ниже коры, к передним рогам спинного мозга. Это путь безусловных рефлексов.

Промежуточный мозг сформировался из второго мозгового пузыря, располагается на внутренней поверхности полушарий под мозолистым телом и сводом, включает в себя два зрительных бугра (в каждом из полушарий). Между ними сохранилась узкая щель (следы бывшего мозгового пузыря), называемая третьим желудочком. Под дном третьего желудочка находится подбугровая (гипоталамическая) область, тесно связанная с гипофизом (железа внутренней секреции) двухсторонними связями и образующая нейроэндокринную систему (рис. 38).

Зрительный бугор (таламус) имеется в каждом полушарии. Между собой оба зрительных бугра связаны серой спайкой. В серой спайке проходят пути, соединяющие между собой ядра обоих зрительных бугров.

Зрительный бугор состоит из трех основных ядер: переднего, внутреннего и наружного. В области соприкосновения наружного и внутреннего ядер находится серединное ядро, или тело Льюиса.

Гистологически ядра зрительного бугра состоят из ганглиозных многополюсных клеток. В клетках наружного ядра содержатся хроматофильные зерна. Сверху зрительный бугор покрыт слоем миелиновых волокон. Ядра зрительного бугра широкими двусторонними связями сообщаются с корой головного мозга и подкорковыми образованиями. К зрительному бугру подходят также нервные пути от нижележащих отделов, от среднего, заднего и спинного мозга; в свою очередь от зрительного бугра к этим отделам также идут обратные нервные пути.

Нервные волокна, подходящие к зрительному бугру от нижележащих отделов, несут импульсы различных видов чувствительности. Так, к наружному ядру зрительного бугра подходят волокна внутренней (медиальной) петли, а также волокна спинно-мозжечкового пути, чувствительный путь тройничного нерва, волокна блуждающего и блокового нервов. Ядра зрительного бугра многочисленными связями соединяются также и с другими отделами межуточного мозга. Таким образом, в зрительных буграх сконцентрированы окончания путей всех видов чувствительности.

К зрительным буграм тесно примыкают особые образования - коленчатые тела. В каждом полушарии различают внутреннее и наружное коленчатое тело. В коленчатых телах имеются скопления серого вещества, образующего ядра этих тел.

Позади зрительного бугра (несколько ниже) располагается особое образование - эпифиз (железа внутренней секреции). Нарушение функции эпифиза часто наблюдается у детей с органическими поражениями центральной нервной системы.

Подбугорье (гипоталамус) расположено под зрительным бугром и является дном третьего желудочка. Здесь выделяют серый бугор, верхушка которого обращена вниз. Серый бугор образован тонкой серой пластинкой; постепенно истончаясь, он переходит в воронку, на конце которой находится нижний мозговой придаток - гипофиз. Сзади серого бугра лежат два полукруглых образования - сосцевидные тела, имеющие отношение к обонятельной системе. Спереди от серого бугра располагается перекрест зрительных нервов (хиазма). В подбугорье также выделяется несколько ядер. Ядра серого бугра образованы мелкими биполярными клетками округлой и полигональной формы. Над зрительным канатиком находится над-оптическое ядро, выше, в стенке третьего желудочка, заложено паравентрикулярное ядро.

Подкорковые функции

обеспечивают регуляцию жизненно важных процессов в организме за счет деятельности подкорковых образований головного мозга. Подкорковые структуры головного мозга имеют функциональные отличия корковых структур и занимают условно подчиненное по отношению к коре положение. К таким структурам сначала относили базальные ядра, гипоталамус. Позднее как физиологически самостоятельные системы были выделены (см. Экстрапирамидная система), включающая базальные ганглии и среднемозговые ядерные образования (красное и черная субстанция); таламонеокортикальная система: ретикулокортикальная (см. Ретикулярная формация), лимбико-неокортикальная система (см. Лимбическая система), мозжечковая система (см. Мозжечок), система ядерных образований промежуточного мозга и др. (рис . ).

Подкорковым функциям принадлежит важная роль в переработке информации, поступающей в из внешней среды и внутренней среды организма. Этот процесс обеспечивается деятельностью подкорковых центров зрения и слуха (латеральные, медиальные, коленчатые тела), первичных центров по переработке тактильной, болевой, протопатической, температурной и других видов чувствительности - специфические и неспецифические ядра таламуса. Особое место среди П. ф. занимают регуляция сна (Сон) и бодрствования, гипоталамо-гипофизарной системы (Гипоталамо-гипофизарная система), которая обеспечивает нормальное физиологическое состояние организма, Гомеостаз . Важная роль принадлежит П. ф. в проявлении основных биологических мотиваций организма, таких как пищевые, половые (см. Мотивации). П. ф. реализуются путем эмоционально окрашенных форм поведения; большое клинико-физиологическое значение имеют П. ф. в механизмах проявления судорожных (эпилептиформных) реакций различного происхождения. Таким образом, П. ф. являются физиологической основой деятельности всего мозга. В свою очередь, П. ф. находятся под постоянным модулирующим влиянием высших уровней корковой интеграции и психической сферы.

При поражениях подкорковых структур определяется локализацией и характером патологического процесса. Например, базальных ядер проявляется обычно синдромом Паркинсонизм а, экстрапирамидными гиперкинезами (Гиперкинезы). ядер таламуса сопровождается расстройствами различных видов чувствительности (Чувствительность), движений (Движения), регуляции вегетативных функций (см. Вегетативная нервная система). Нарушения функции глубинных структур ( и др.) проявляются в виде бульбарных параличей (Бульбарный паралич), псевдобульбарных параличей (Псевдобульбарный паралич) с тяжелым исходом. См. также Головной мозг , Спинной мозг.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Подкорковые функции" в других словарях:

    ПОДКОРКОВЫЕ ФУНКЦИИ - ПОДКОРКОВЫЕ ФУНКЦИИ. Учение о функциях П. образований, развившееся на базе анат. клинических (по преимуществу) сравнительно анатомических и экспериментально физиологических исследований, насчитывает i.e много лет давности и не может считаться за …

    Совокупность физиологических процессов, связанных с деятельностью отдельных подкорковых структур мозга (См. Подкорковые структуры мозга) или с их системой. С анатомической точки зрения к подкорковым относят все ганглионарные образования,… …

    подкорковые функции - совокупность физиологических процессов, связанных с деятельностью отдельных подкорковых структур мозга или с их системой в целом. П.ф. оказывают активизирующее влияние на деятельность коры головного мозга … Энциклопедический словарь по психологии и педагогике

    Комплекс образований головного мозга, расположенных между корой больших полушарий и продолговатым мозгом; участвуют в формировании всех поведенческих реакций человека и животных. В анатомическом плане к П. с. м. относят Зрительные бугры,… … Большая советская энциклопедия

    - (cortex cerebri) серое вещество, расположенное на поверхности полушарий большого мозга и состоящее из нервных клеток (нейронов), нейроглии, межнейронных связей коры, а также кровеносных сосудов. К. б. м. содержит центральные (корковые) отделы… … Медицинская энциклопедия

    Комплексы структур нервной системы, осуществляющие восприятие и анализ информации о явлениях, происходящих в окружающей организм среде и (или) внутри самого организма и формирующие специфические для данного анализатора ощущения. Термин… … Медицинская энциклопедия

    Морфофункциональные объединения нейронов различных отделов центральной нервной системы, обеспечивающие целостные реакции организма, регуляцию и координацию отдельных его функций. Единой классификации нервных центров нет. По локализации их делят… … Медицинская энциклопедия

    THALAMUS OPTICUS - THALAMUS OPTICUS, зрительный бугор, наиболее объемистый и сложный по структуре из базалъных узлов (см.); представляет собой скопление серого вещества, пронизанное во локнами и отделенное от такого же образования другой стороны желудочком. Т. о.… … Большая медицинская энциклопедия

    СИНКИНЕЗИИ - СИНКИНЕЗИИ, или содружественные движения (synkinesia, Mitbewegungen немцев, mouvements associes французских авторов), представляют собой непроизвольные мышечные сокращения, сопровождающие выполнение какого либо активного двигательного акта.… … Большая медицинская энциклопедия

    I Ретикулярная формация (formatio reticularis; лат. reticulum сетка; синоним ретикулярная субстанция) комплекс клеточных и ядерных образований, занимающих центральное положение в стволе головного мозга и в верхнем отделе спинного мозга. Большое… … Медицинская энциклопедия

    I Высшая нервная деятельность интегративная деятельность головного мозга, обеспечивающая индивидуальное приспособление высших животных и человека к изменяющимся условиям окружающей среды. Научные представления о В. н. д. были разработаны школой… … Медицинская энциклопедия

Базальные, или подкорковые, ядра представляют собой структуры переднего мозга, к которым относятся: хвостатое ядро, скорлупа, бледный шар и субталамическое ядро. Они располагаются под .

Развитие и клеточное строение хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование — полосатое тело. Базальные ядра имеют множественные афферентные и эфферентные связи с корой, промежуточным и средним мозгом, лимбической системой и мозжечком. В связи с этим они принимают участие в регуляции двигательной активности и, в частности, медленных или червеобразных движений. Примером таких двигательных актов является медленная ходьба, перешагивание через препятствия и т.д.

Опыты с разрушением полосатого тела доказали его важную роль в организации поведения животных.

Бледный шар является центром сложных двигательных реакций и участвует в обеспечении правильного распределения мышечного тонуса.

Свои функции бледный шар осуществляет опосредованно через образования — красное ядро и черную субстанцию.

Бледный шар также имеет связь с ретикулярной формацией. Он обеспечивает сложные двигательные реакции организма и некоторые вегетативные реакции. Стимуляция бледного шара вызывает активацию центра голода и пищевого поведения. Разрушение бледного шара способствует развитию сонливости и затруднению выработки новых условных рефлексов.

При поражении базальных ядер у животных и человека могут возникать разнообразные неконтролируемые двигательные реакции.

В целом базальные ядра принимают участие в регуляции не только моторной деятельности организма, но и ряда вегетативных функций.

Базальные ядра и их строение

Подкорковые (базальные) ядра относятся к подкорковым образованиям, которые имеют общее происхождение с большими полушариями и располагаются внутри их белого вещества, между лобными долями и промежуточным мозгом. К ним относятся хвостатое ядро и скорлупа , объединяемые общим названием «полосатое тело», поскольку скопление нервных клеток, образующих серое вещество, чередуется с прослойками белого вещества. Вместе с бледным шаром они образуют стриопаллидарную систему подкорковых ядер. К стриопаллидарной системе также относится ограда, субталамическое (под- бугорное) ядро и черная субстанция (рис. 1).

Рис. 1. Базальные ядра мозга и их связи с другими системами: А — анатомия базальных ядер; Б — связи базальных ядер с кортикоспинальной и мозжечковой системами, контролирующими движения

Стриопаллидарная система — это связующее звено между корой и стволом мозга. К этой системе подходят афферентные и эфферентные пути.

Функционально базальные ядра являются надстройкой над красными ядрами среднего мозга и обеспечивают пластический тонус, т.е. способность удерживать длительное время врожденную или выученную позу, — например, поза кошки, которая стережет мышь, или длительное удержание позы балериной, выполняющей какое-либо па. При удалении коры мозга наблюдается «восковая ригидность», которая является выражением пластического тонуса без регулирующего влияния коры головного мозга. Животное, лишенное коры головного мозга, надолго застывает в одной позе.

Подкорковые ядра обеспечивают осуществление медленных, стереотипных, рассчитанных движений, а центры базальных ганглиев — регуляцию врожденных и приобретенных программ движения, а также регуляцию мышечного тонуса.

Нарушение различных структур подкорковых ядер сопровождается многочисленными двигательными и тоническими сдвигами. Так, у новорожденных неполное созревание базальных ядер приводит к резким судорожным сгибательным движениям. По мерс развития этих структур появляется плавность, рассчитанность движений.

Одна из главных задач базальных ядер при осуществлении двигательного контроля — контроль комплексных стереотипов моторной деятельности (например, написание букв алфавита). Когда имеется серьезное повреждение базальных ядер, кора больших полушарий не может обеспечить нормальное поддержание этого комплексного стереотипа. Вместо этого воспроизведение уже однажды написанного становится затруднительным, как будто приходится учиться писать в первый раз. Примером других стереотипов, которые обеспечиваются базальными ядрами, являются разрезание бумаги ножницами, забивание гвоздя, копание лопатой земли, контроль движений глаз и голоса и другие хорошо отработанные движения.

Хвостатое ядро играет важную роль в сознательном (когнитивном) контроле двигательной активности. Большинство наших двигательных актов возникает в результате их обдумывания и сопоставления с информацией, имеющейся в памяти.

Нарушение функций хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, хореи (подергивание конечностей, туловища, как при некоординированном танце), двигательной гиперактивностью в форме бесцельного перемещения с места на место.

Хвостатое ядро принимает участие в речевых, двигательных актах. Так, при расстройстве передней части хвостатого ядра нарушается речь, возникают затруднения в повороте головы и глаз в сторону звука, а повреждение задней части хвостатого ядра сопровождается потерей словарного запаса, снижением кратковременной памяти, прекращением произвольных дыханий, задержкой речи.

Раздражение полосатого тела у животного приводит к наступлению сна. Этот эффект объясняется тем, что полосатое тело вызывает торможение активирующих влияний неспецифических ядер таламуса на кору. Полосатое тело регулирует ряд вегетативных функций: сосудистые реакции, обмен веществ, теплообразование и тепловыделение.

Бледный шар регулирует сложные двигательные акты. При его раздражении наблюдается сокращение мышц конечностей. Повреждение бледного шара вызывает маскообразность лица, тремор головы, конечностей, монотонность речи, нарушаются сочетанные движения рук и ног при ходьбе.

С участием бледного шара осуществляется регуляция ориентировочных и оборонительных рефлексов. При нарушении бледного шара изменяются пищевые реакции, например, крыса отказывается от пищи. Это объясняется потерей связи бледного шара с гипоталамусом. У кошек и крыс наблюдается полное исчезновение пищедобывательных рефлексов после двустороннего разрушения бледного шара.

Над промежуточным мозгом расположены подкорковые центры. Из них наибольшее значение имеют полосатые тела, которые состоят из двух ядер: хвостатого и чечевицеобразного. Хвостатое ядро примыкает к зрительным буграм. От чечевицеобразного ядра его отделяет пучок белых нервных волокон - внутренняя капсула. Чечевицеобразное ядро делится на наружную часть - скорлупу и внутреннюю - бледный шар.


Бледный шар -- главный двигательный центр промежуточного мозга. Его возбуждение вызывает сильные сокращения мышц шеи, рук, туловища и ног, главным образом на противоположной стороне. Перевозбуждение бледного шара вызывает навязчивые движения рук, главным образом пальцев, - атетозы и всего тела - хорею. Хорея, или непроизвольный танец, бывает у детей от 6 до 15 лет. Бледный шар по центробежным волокнам тормозит красное ядро, подавляя контрактильный тонус. Поэтому выключение бледного шара приводит в общей скованности, резкому повышению тонуса мышц, маскообразному лицу, тихой монотонной речи. Бледный шар уточняет координацию движений, участвуя в выполнении добавочных движений, способствующих выполнению основных, например, в фиксировании суставов, качании рук при ходьбе и т. п., и координирует двигательные рефлексы с вегетативными функциями.

Хвостатое ядро и скорлупа чечевицеобразного ядра по центробежным волокнам тормозят бледный шар и прекращают перепроизводство движений (гиперкинез), вызванное его возбуждением. Поэтому их поражение вызывает гиперкинез, атетоз и хорею. В хвостатое ядро и скорлупу чечевицеобразного ядра поступают центростремительные волокна из зрительных бугров и мозжечка, что обеспечивает их участие в функциях этих отделов нервной системы.

Двигательные ядра полосатого тела, зрительных бугров, промежуточного мозга и гипоталамической области и красное ядро входят в состав экстра-пирамидной системы, которая, при ведущей роли пирамидной системы, участвует в выполнении сложнейших врожденных двигательных актов, связанных с деятельностью внутренних органов (пищевые, половые рефлексы и др.) и в изменениях положения и передвижении тела (трудовые и спортивные движения, ходьба, бег и т. п.). В каждом полушарии с перечисленными образованиями мозгового ствола тесно связана лимбическая, или краевая, доля больших полушарий, которая как поясная извилина опоясывает мозолистое тело спереди и огибает сзади, переходя в извилину морского коня (гиппокамп). Вместе со сводом и миндалевидным ядром лимбическая доля составляет лимбическую систему.

Лимбическая система связана с ретикулярной формацией мозгового ствола и вызывает изменения функций организма, характерные для эмоций, ведущая роль в осуществлении которых принадлежит лобным долям.